初一數學復習教案(精選15篇)
在這里,我們將為大家呈現一份精心設計的教學計劃。本教案旨在為教師提供一份科學、系統的教學指導。以下是小編為大家收集的初一數學復習教案 ,歡迎閱讀,希望大家能夠喜歡。
初一數學復習教案【篇1】
學習目標
1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空間觀念,推理能力和有條理表達能力.
2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.
學習重點:
直線平行的條件的.應用.
學習難點:
選取適當判定直線平行的方法進行說理是重點也是難點.
一、學習過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習:
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題)(第2題)
2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是()
A.因為∠1=∠4,所以DE∥AB
B.因為∠2=∠3,所以AB∥EC
C.因為∠5=∠A,所以AB∥DE
D.因為∠ADE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則()
A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4
三、解答題.
1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
初一數學復習教案【篇2】
1.教學重點、難點
重點:列代數式。
難點:弄清楚語句中各數量的意義及相互關系。
2.本節知識結構:
本小節是在前面代數式概念引出之后,具體講述如何把實際問題中的數量關系用代數式表示出來。課文先進一步說明代數式的概念,然后通過由易到難的三組例子介紹列代數式的方法。
3.重點、難點分析:
列代數式實質是實現從基本數量關系的語言表述到代數式的一種轉化。列代數式首先要弄清語句中各種數量的意義及其相互關系,然后把各種數量用適當的字母來表示,最后再把數及字母用適當的運算符號連接起來,從而列出代數式。
如:用代數式表示:比 的2倍大2的數。
分析 本題屬于“…比…多(大)…或…比…少(小)”的類型,首先要抓住這幾個關鍵詞。然后從中找出誰是大數,誰是小數,誰是差。比的2倍大2的數換個方式敘述為所求的數比的2倍大2。大和比前邊的量,即所求的數為大數,那么比和大之間量,即 的2倍則為小數,大后邊的量2即為差。所以本小題是已知小數和差求大數。因為大數=小數+差,所以所求的數為:2 +2.
4.列代數式應注意的問題:
(1)要分清語言敘述中關鍵詞語的意義,理清它們之間的數量關系。如要注意題中的“大”,“小”,“增加”,“減少”,“倍”,“倒數”,“幾分之幾”等詞語與代數式中的加,減,乘,除的'運算間的關系。
(2)弄清運算順序和括號的使用。一般按“先讀先寫”的原則列代數式。
(3)數字與字母相乘時數字寫在前面,乘號省略不寫,字母與字母相乘時乘號省略不寫。
(4)在代數式中出現除法時,用分數線表示。
5.教法建議:
列代數式是本章教學的一個難點,學生不容易掌握,這樣老師在上課時,首先要讓學生理解代數式的本質,弄清語句中各種數量的意義及其相互關系,然后設計一定數量的練習題,由易到難,螺旋式上升,使學生能夠正確列出代數式。
初一數學復習教案【篇3】
教學目標:
1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;
2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;
3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。
教學難點:
數軸的概念和用數軸上的點表示有理數
知識重點
教學過程(師生活動) 設計理念
設置情境
引入課題
教師通過實例、課件演示得到溫度計讀數.
問題1:溫度計是我們日常生活中用來測量溫度的`重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創設問題情境,激發學生的學習熱情,發現生活中的數學。
探究新知
教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?
從而得出數軸的三要素:原點、正方向、單位長度 體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。
從游戲中學數學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數軸概念的理解
尋找規律
歸納結論
問題3:
1, 你能舉出一些在現實生活中用直線表示數的實際例子嗎?
2, 如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?
3, 哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?
4, 每個數到原點的距離是多少?由此你會發現了什么規律?
(小組討論,交流歸納)
歸納出一般結論,教科書第12的歸納。 這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結與作業
課堂小結
請學生總結:
1, 數軸的三個要素;
2, 數軸的作以及數與點的轉化方法。
本課作業
1, 必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1, 數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。
2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3, 注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。
初一數學復習教案【篇4】
教學目標:
1、知識與技能
(1)通過實例,感受引入負數的必要性和合理性,能應用正負數表示生活中具有相反意義的量。
(2)理解有理數的意義,體會有理數應用的廣泛性。
2、過程與方法
通過實例的引入,認識到負數的產生是來源于生產和生活,會用正、負數表示具有相反意義的量,能按要求對有理數進行分類。
重點、難點:
1、重點:正數、負數有意義,有理數的意義,能正確對有理數進行分類。
2、難點:對負數的理解以及正確地對有理數進行分類。
教學過程:
一、創設情景,導入新課
大家知道,數學與數是分不開的,現在我們一起來回憶一下,小學里已經學過哪些類型的數?
學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的
為了表示一個人、兩只手、……,我們用到整數1,2,……
為了表示“沒有人”、“沒有羊”、……,我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數、零或分數、小數表示。
二、合作交流,解讀探究
1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的.數,都記作5℃,就不能把它們區別清楚。它們是具有相反意義的兩個量。
現實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。“運進”和“運出”,其意義是相反的。
同學們能舉例子嗎?
學生回答后,教師提出:怎樣區別相反意義的量才好呢?
待學生思考后,請學生回答、評議、補充。
教師小結:同學們成了發明家。甲同學說,用不同顏色來區分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數字前面加不同符號來區分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數學家就曾經采用不同的顏色來區分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。
現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。
讓學生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
教師講解:什么叫做正數?什么叫做負數?強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號。
2、給出新的整數、分數概念
引進負數后,數的范圍擴大了。過去我們說整數只包括自然數和零,引進負數后,我們把自然數叫做正整數,自然數前加上負號的數叫做負整數,因而整數包括正整數(自然數)、負整數和零,同樣分數包括正分數、負分數。
3、給出有理數概念
整數和分數統稱為有理數。
4、有理數的分類
為了便于研究某些問題,常常需要將有理數進行分類,需要不同,分類的方法也常常不同根據有理數的定義可將有理數分成兩類:整數和分數。有理數還有沒有其他的分類方法?
待學生思考后,請學生回答、評議、補充。
教師小結:按有理數的符號分為三類:正有理數、負有理數和零。在有理數范圍內,正數和零統稱為非負數。向學生強調:分類可以根據不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。
三、總結反思
引導學生回答如下問題:本節課學習了哪些基本內容?學習了什么數學思想方法?應注意什么問題?
由于實際生活中存在著許多具有相反意義的量,因此產生了正數與負數。正數是大于0的數,負數就是在正數前面加上“—”號的數,負數小于0。0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃。
四、課后作業:課本P5習題1。1A第1、2、4題。
初一數學復習教案【篇5】
教學目標
1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
教學難點
深化對正負數概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學過程(師生活動)
設計理念
知識回顧與深化
回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?學生思考并討論.(數0既不是正數又不是負數,是正數和負數的分界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數.那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.
問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子,通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等。可視教學中的實際情況進行補充.
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出.
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的.,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)
本課作業1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指
定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.
初一數學復習教案【篇6】
教學目標:
1、使學生在現實情境中初步認識負數,了解負數的作用,感受運用負數的需要和方便。
2、使學生知道正數和負數的讀法和寫法,知道0既不是正數,又不是負數。正數都大于0,負數都小于0。
3、使學生體驗數學和生活的密切聯系,激發學生學習數學的興趣,培養學生應用數學的能力。
教學重點:
初步認識正數和負數以及讀法和寫法。
教學難點:
理解0既不是正數,也不是負數。
教學具準備:
多媒體課件、溫度計、練習紙、卡片等。
教學過程:
一、游戲導入(感受生活中的相反現象)
1、游戲:我們來玩個游戲輕松一下,游戲叫做《我反我反我反反反》。游戲規則:老師說一句話,請你說出與它相反意思的話。
①向上看(向下看)
②向前走200米(向后走200米)
③電梯上升15層(下降15層)。
2、下面我們來難度大些的,看誰反應最快。
①我在銀行存入了500元(取出了500元)。
②知識競賽中,五(1)班得了20分(扣了20分)。
③10月份,學校小賣部賺了500元。(虧了500元)。
④零上10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游,11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預報。(天氣預報片頭)
二、教學例1
1、認識溫度計,理解用正負數來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現在你能看出南京是多少攝氏度嗎?(是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
(2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的`呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結合課件,突出上海的氣溫在零刻度線以上)。
(3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
(4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
①上海的氣溫比0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的4℃也就是+4℃。(板書)
負號能不能省略不寫?為什么?
②北京的氣溫比0℃低,是零下4攝氏度。我們可以用—4℃來表示零下4攝氏度(板書—4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
(5)小結:通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數可以來表示零上溫度,用—4這樣的數可以表示零下溫度。
2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預報,將你聽到城市的最低和溫度記錄下來。
4、小結:通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學習珠峰、吐魯番盆地的海拔表達方法(P4第2題)
1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關的。最近經國家測繪局公布了珠峰的最新海拔高度。老師把有關網頁帶來了。(課件出現網頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的海拔圖。(動態演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導學生交流,回答珠穆朗瑪峰比海平面高8844。43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
(1)交流:珠穆朗瑪峰的海拔可以記作:+8844。43米或8844。43米。
吐魯番盆地的海拔可以記作:—155米。(板書)
(2)小結:以海平面為界線,+8844。43米或8844。43米這樣的數可以表示海平面以上的高度,—155米這樣的數可以表示海平面以下的高度。
四、小組討論,歸納正數和負數。
1、通過剛才的學習,我們收集到了一些數據(課件顯示)我們可以用這些數來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數,它們一樣嗎?你們想幫它們分分類嗎?
2、學生交流、討論。
3、指出:因為+8844。43也可以寫成8844。43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導學生爭論,各自發表意見)
①如果都同意分三類的,老師可以出難題:我覺得0可以分在4它們一類啊,你們怎么來說服我?
②如果有學生發表分三類的,有的分兩類的,可以引導他們互相爭論。
4、小結:什么是正數、負數?
師:(結合圖)我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負幾表示。0是正負數的分界點,把正數和負數分開了,它誰都不屬于。但對于正數和負數來說,它卻必不可少。我們把以前學過的,象+4、16、3/8、0。5、+8844。43等這樣的數叫做正數;象—4、—155等這樣的數我們叫做負數;而0既不是正數,也不是負數。(板書)這節課我們就和大家一起來認識正數和負數。(板書:認識正數和負數)
五、聯系生活,鞏固練習
1、練習一第2、3題
2、你知道嗎:水沸騰時的溫度是__。水結冰時的溫度是__。地球表面的最低溫度是。
3、討論生活中的正數和負數
(1)存折:這里的—800表示什么意思?(以原來的錢為標準,取出了800元記作—800;存入了1200元記作1200元,還可以記作+1200元)
(2)電梯:這里的1和—1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,—1就表示地下一層)。老師現在要到33層應該按幾啊?要到地下3層呢?
六、課堂小結
這節課我們一起認識了正數和負數。在我們的生活中,零攝氏度以上和零攝氏度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數和負數來表示。
初一數學復習教案【篇7】
一、教學目標:
⑴在具體情景中了解余角與補角,懂得余角和補角的性質,通過練習掌握余角和補角的概念及性質,并能運用它們解決一些簡單的實際問題。
⑵經歷觀察、操作、推理、交流等活動,發展學生的幾何概念,培養學生的推理能力和表達能力。
⑶體驗數學知識的發生、發展過程,敢于面對數學活動中的困難,建立學好數學的自信心。
二、教學重點、難點:
余角與補角的性質
三、教學過程:
復習、引入:
⑴復習角的定義。你知道有哪些特殊的角?
⑵用量角器量一量圖中每組兩個角的.度數,并求出它們的和。
你有什么發現?
新課:
由學生的發現,給出余角和補角的定義(文字敘述)。
并且用數學符號語言進行理解。
問題1:如何求一個角的余角和補角。
①∠1的余角:90°-∠1
②∠α的補角:180°-∠α
練習:填表(求一個角的余角、補角)
拓廣:觀察表格,你發現α的余角和α的補角有什么關系?
如何進行理論推導?
結論:α的補角比α的余角大90°
α一定是銳角
鈍角沒有余角,但一定有補角。
初一數學復習教案【篇8】
一、素質教育目標
(一)知識教學點
1.使學生理解近似數和有效數字的意義
2.給一個近似數,能說出它精確到哪一痊,它有幾個有效數字
3.使學生了解近似數和有效數字是在實踐中產生的.
(二)能力訓練點
通過說出一個近似數的精確度和有效數字,培養學生把握關鍵字詞,準確理解概念的能力.
(三)德育滲透點
通過近似數的學習,向學生滲透具體問題具體分析的辯證唯物主義思想
(四)美育滲透點
由于實際生活中有時要把結果搞得準確是辦不到的或沒有必要,所以近似數應運而生,近似數和準確數給人以美的享受.
二、學法引導
1.教學方法:從實際問題出發,啟發引導,充分體現學生為主全,注重學生參與意識
2.學生學法,從身邊找出應用近似數,準確數的例子→近似數概念→鞏固練習
三、重點、難點、疑點及解決辦法
1.重點:理解近似數的精確度和有效數字.
2.難點:正確把握一個近似數的精確度及它的有效數字的個數.
3.疑點:用科學記數法表示的近似數的精確度和有效數字的個數.
四、課時安排
1課時
五、教具學具準備
投影儀,自制膠片
六、師生互動活動設計
教者提出生活中應用準確數和近似數的例子,學生討論回答,學生自己找出類似的例子,教者提出精確度和有效數字的概念,教者提出近似數的有關問題,學生討論解決.
七、教學步驟
(一)提出問題,創設情境
師:有10千克蘋果,平均分給3個人,應該怎樣分?
生:平均每人千克
師:給你一架天平,你能準確地稱出每人所得蘋果的千克數嗎?
生:不能
師:哪怎么分
生:取近似值
師:板書課題
【教法說明】通過提出實際問題,使學生認識到研究近似數是必須的,是自然的,從而提高學生近似數的積極性
(二)探索新知,講授新課
師出示投影1
下列實際問題中出現的數,哪些是精確數,哪些是近似數.
(1)初一(1)有55名同學
(2)地球的半徑約為6370千米
(3)中華人民共和國現在有31個省級行政單位
(4)小明的身高接近1.6米
學生活動:回答上述問題后,自己找出生活中應用準確數和近似數的例子.
師:我們在解決實際問題時,有許多時候只能用近似數你知道為什么嗎?
啟發學生得出兩方面原因:1.搞得完全準確有時是辦不到的,2.往往也沒有必要搞得完全準確.
以開始提出的問題為例,揭示近似數的有關概念
板書:
1.精確度
2.有效數字:一般地,一個近似數,四舍五入到哪一位,就說這個數精確到哪一位,這時,從左邊第一個不是0的數字起,到精確的數位止,所有的數字,都叫做這個數的'有效數字.
例如:3.3有二個有效數字
3.33有三個有效數字
討論:近似數0.038有幾個有效數字,0.03080呢?
【教法說明】通過討論學生明確近似數的有效數字需注意的兩點:一是從左邊第一個不是零的數起;二是從左邊第一個不是零的數起,到精確的位數止,所有的數字,教者在有效數字概念對應的文字底下畫上波浪線,標上①、②
例1.(出示投影2)
下列由四舍五入吸到近似數,各精確到哪一位,各有哪幾個有效數字?
(1)43.8(2).03086(3)2.4萬
學生口述解題過程,教者板書.
對于近似數2.4萬學生又能認為是精確到十分位,這時可組織學生討論近似數與5.4和近似數5.4萬中的兩個4的數位有什么不同,從而得出正確的答案.
【教法說明】對于疑點問題,通過啟發討論,適時點撥,遠比教者直接告訴正確答案,理解深刻得多.
鞏固練習見課本122頁練習2、3頁
例2(出示投影3)
下列由四舍五入得來的近似數,各精確到哪一位,各有幾個有效數字?
初一數學復習教案【篇9】
教學目標
1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點正確區分兩種不同意義的量。
知識重點兩種相反意義的量
教學過程(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是__,身高1。73米,體重58。5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的.重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業教科書第7頁習題1。1第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子
或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
初一數學復習教案【篇10】
學習目標
1. 理解有序數對的應用意義,了解平面上確定點的常用方法
2. 培養用數學的意識,激發學習興趣.
學習重點:理解有序數對的意義和作用
學習難點:用有序數對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數據找到位置的。
你能舉出生活中利用數據表示位置的例子嗎?
二.概念確定
有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)
利用有序數對,可以很準確地表示出一個位置。
1.在教室里,根據座位圖,確定數學課代表的.位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
[鞏固練習]
1. 如圖是某城市市區的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
[小結]
1. 為什么要用有序數對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業]
必做題:教科書44頁:1題
初一數學復習教案【篇11】
【教學目標】
引導學生通過常規分析,得出解題思路,經歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;
【教學難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學過程】
問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍。現在汽車從甲地到乙地需要多少小時?
分析:要求現在汽車從甲地到乙地需要多少小時,那么先要求出汽車現在的速度,而汽車現在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現在的速度:32×2.5=80(千米)
現在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現在的速度是原來的2.5倍,所以原來的時間是現在的
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的'工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結】
在解答應用題時要善于應用不同的思路和技巧,巧解問題
【作業】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
初一數學復習教案【篇12】
一、 教學目標
1、 在了解相反意義量的基礎上,使學生了解正負數的概念和學習正負數的意義。
2、 使學生能正確判斷一個數是正數還是負數,明確零既不是正數也不是負數。
3、 學會用正負數表示實際問題中具有相反意義的量。
二、 教學重點和難點
重點:正負數的概念
難點:負數的概念
三、 教具
投影片、實物投影儀
四、 教學內容
(一 )引入
師:我們知道,為了表示物體的個數和事物的順序,產生了1,2,3,4……這些數,我們把它叫做什么數?
生:自然數
師:為了表示“沒有”,又引入了一個什么數?
生:自然數0
師:當測量和計算的結果不是整數時,又引進了什么數?
生:分數(小數)
師:可見數的概念是隨著生產和生活的需要而不斷發展的。請同學們想一想,在現實生活中是否還存在著別類型的數呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。
請學生用數表示這些量,遭遇表示困難。
師:為了能表示這些量,我們需要引入一種新數這就是本節課所要學習的內容。[板書:1、1正數與負數]
(二)新課教學
1、 相反意義的量
師:在現實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)
(1) 汽車向東行駛2.5千米和向西行駛1.5千米;
(2) 氣溫從零上6攝氏度下降到零下6攝氏度;
(3) 風箏上升10米或下降5米。
引導學生明確具有相反意義的量的特征:(1)有兩個量 (2)有相反的意義
請學生舉出一些相反意義的量的實例。
教師歸結:相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進與運出,上升與下降等。
2、 正數與負數
師:用小學里學過的數能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?
由師生討論后得出:我們把一種意義的量規定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規定為負的,用“-”(讀作負)號來表示。
師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負6攝氏度),請同學們用同樣的方法表示(1)、(2)兩題。
生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負5米)。
師:像+6,+10,+2.5等前面放有“+”號的數叫做正數,像-6,-5,-1.5等前面放有“-”號的數叫做負數。正號可以省略不寫,如+5可以寫成5,但負數的負號能省略不寫嗎?
生:(討論后得出)不能。
師:(以溫度計為例)溫度計中的0不是表示沒有溫度,它通常表示水結成冰時的溫度,是零上溫度與零下溫度的`分界點,因此得出:零既不是正數也不是負數。
(三)、練習
1、 學生完成課本第4頁練習1,2,3
2、 補充練習
(1)在-2,+2.5,0, ,-0.35,11中,正數是 ,負數是 ;
(2)如果向東為正,那么走-50米表示什么意思?如果向南為正,那么走-50米又表示什么意思?
(3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為 。
(四)小結
1、 引入負數可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數表示,那么另一種量可以用負數表示。
2、 在表示具有相反意義的量時,把哪一種意義的量規定為正,可根據實際情況決定。
3、 要特別注意零既不是正數也不是負數,建立正負數概念后,當考慮一個數時,一定要考慮它的符號,這與小學里學過的數有很大的區別。
(五)作業
見作業1.1節作業。
初一數學復習教案【篇13】
教學目標
1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類
知識重點正確理解有理數的概念
教學過程
探索新知
在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,”。
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練
1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的.概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號:。
思考:
問題1:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
創新探究
問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結與作業
到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
初一數學復習教案【篇14】
教學目標
1、熟練掌握加減消元法;
2、能根據方程組的特點選擇合適的方法解方程組,
3、通過分析實際問題中的數量關系,建立方程解決問題,進一步認識方程模型的重要性.
教學難點
教材中例4的數量關系較復雜,是本課的難點。
知識重點能根據方程組的特點選擇合適的方法解方程組。
教學過程
(師生活動)設計理念
創設情境
1、復2、習提問
解二元一次方程組有哪幾種方法?它們的實質是什么?
2、播放動畫《西游記》場景,配數學詩.
悟空順風探妖蹤,千里只行四分鐘.
歸時四分行六百,風速多少才稱雄?
請一名學生解釋詩歌大意:孫悟空順風去查妖精的行蹤,僅用4分鐘就飛躍千里.逆風返回時4分鐘走了600里,問風速是多少?
學生思考,根據題中等量關系,列出方程.
設悟空行走速度為x里/分,風速為y里/分,則
你會解這個方程組嗎?引例生動活波,激發學生的探究欲望,讓學生在看、聽、想的過程中愉悅地獲得數學知識.
探究新知學生獨立完成后.在班級里交流解法.
解法一:①+②,消去y,得8x=1600
∴x=200,代人①,得y=50
原方程組的解為
解法二:①-②,消去x。以下略.
解法三:整體代入.由①得:4x=1000-4y,代入②,消去x.
同理,也可消去y.
解法四:化簡原方程組為,再利用加減消元,或代入消元均可.
反思:試著從各個角度比較“代入法”與“加減法”的共同點與不同點.(同學間相互交流)它們各適用于什么情況?
在學生回答的基礎上,教師指出:當方程組中某一個未知數的系數絕對值是1或一個方程的常數項為零時,用代入法較方便;當兩個方程中,同一個未知數的系數絕對值相等或成整倍數時,用加減法較方便.
練習1:根據方程組的特點選擇更適合它的`解法.你會怎樣解呢?(第1,2小題完成后再出示第3小題.)
(1)
(2)
(3)
第1小題用代入法,第2小題用加減法,都很明確,第3小題有爭議.全班分成兩部分.1、2大組用代入法做,3、4大組用加減法做.比較兩解法的簡便程度.
反思:當方程組中任一個未知數的系數絕對值不是1,且不成倍數關系時,一般經過變形利用加減法會使解法更簡單.嘗試不同的解法,培養學生的發散性思維和擇優意識。
解二元一次方程組不管采用哪種方法,都可以獲得它的解,但根據題目形式的特點,選擇不同的方法可以減少彎路,加快速度使解題過程簡潔提高正確率.
實際應用教材第109頁例4.
2臺大收割機和5臺小收割機工作2小時收割小麥
3.6公頃,3臺大收割機和2臺小收割機工作5小時收割小麥8公頃,問:1臺大收割機和1臺小收割機1小時各收割小麥多少公頃?
分析:
問題1.列二元一次方程組解應用題的關鍵是什么?
(找出兩個等量關系)
問題2.你能找出本題的等量關系嗎?
2臺大收割機2小時的工作量+5臺小收割機2小時的工作量=3.6
3臺大收割機5小時的工作量+2臺小收割機5小時的工作量=8
問題3.怎么表示2臺大收割機2小時的工作量呢?
設1臺大收割機1小時收割小麥x公頃,則
2臺大收割機1小時收割小麥_公頃,
2臺大收割機2小時收割小麥_公頃.
現在你能列出方程了嗎?
解后反思:應用題中,如何化解較復雜數量關系?
練習2:教科書第111頁練習第3題應用題.體會方程是刻畫現實世界的有效數學模型。
小結與作業
小結提高在學生暢所欲言話收獲的基礎上,通過老師進行補充的方式進行。
本節課學習了哪些內容?你有哪些收獲?
布置作業
8、做題:教科書112頁習題8.2第5、7題。
9、選做題:教科書112頁習題8.2第8題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1、能根據教材編寫思路,遵循學生的心理特點,創造性使用新教材中的問題情境(引入與111頁練習3屬同種數學模型),把教材中不動的問題情境轉化為動的問題情境.
2、真正把課堂還給了學生,使學生真正地變為課堂學習的主人,老師只是學生學習的引導者和組織者.由于學生的個體差異,思維方式的不同,為了給學生創造個性化的學習空間,鼓勵學生們用自己的方式去學習,把學習的主動權還給他們,讓他們自己去探究不同的解題方法.通過例題分析、啟發提問、集體討論等形式,使學生能準確而迅速地確定解題方法從而突出了本課的重點、難點—選擇適當方法求解二元一次方程組.
初一數學復習教案【篇15】
教學目標:
1.了解正數與負數是實際生活的需要.
2.會判斷一個數是正數還是負數.
3.會用正負數表示互為相反意義的量.
教學重點:會判斷正數、負數,運用正負數表示具有相反意義的量,理解表示具有相反意義的量的意義.
教學難點:負數的引入.
教與學互動設計:
(一)創設情境,導入新課
課件展示珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況.
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7℃和零下5℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.
想一想以上都是一些具有相反意義的量,你能用小學算術中的數來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規定為負的,正的量用算術里學過的數表示,負的量用學過的數前面加上“-”(讀作負)號來表示(零除外).
活動每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數表示.
討論什么樣的數是負數?什么樣的數是正數?0是正數還是負數?自己列舉正數、負數.
總結正數是大于0的數,負數是在正數前面加“-”號的數,0既不是正數,也不是負數,是正數與負數的分界點.
(三)應用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數表示.
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02g,記作+0.02g,那么-0.03g表示什么?
【例3】某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應記為()
A.3B.-3C.-2.5D.-7.45
【點撥】讀懂題意是解決本題的關鍵.7:45與10:00相差135分鐘.
(四)總結反思,拓展升華
為了表示現實生活中具有相反意義的量引進了負數.正數就是我們過去學過(除零外)的數,在正數前加上“-”號就是負數,不能說“有正號的數是正數,有負號的數是負數”.另外,0既不是正數,也不是負數.
1.下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負數的.方法記賬,你還可以怎樣記賬?比較各種記賬的優劣.
2.數學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負號)表示“蹲”.
(1)由一個同學大聲喊:+1,-2,-3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲.
(五)課堂跟蹤反饋
夯實基礎
1.填空題:
(1)如果節約用水30噸記為+30噸,那么浪費20噸記為噸.
(2)如果4年后記作+4年,那么8年前記作年.
(3)如果運出貨物7噸記作-7噸,那么+100噸表示.
(4)一年內,小亮體重增加了3kg,記作+3kg;小陽體重減少了2kg,則小陽增加了.
2.中午12時,水位低于標準水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.
(1)用正數或負數記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3.糧食每袋標準重量是50公斤,現測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數表示,請用正數和負數記錄甲、乙、丙三袋糧食的超重數和不足數.
(六)課時小結
1.與以前相比,0的意義又多了哪些內容?
2.怎樣用正數和負數表示具有相反意義的量?(用正數表示其中具有一種意義的量,另一種量用負數表示)
上一篇:初中數學課教案15篇
下一篇:高中數學必修一教案15篇