關(guān)于名師新人教版八年級數(shù)學(xué)下冊教案5篇
數(shù)學(xué)的本質(zhì)在于它的自由。數(shù)學(xué)是打開科學(xué)大門的鑰匙。數(shù)學(xué)是各式各樣的證明技巧。挑選好一個確定得研究對象,鍥而不舍。你可能永遠達不到終點,但是一路上準(zhǔn)可以發(fā)現(xiàn)一些有趣的東西。這里給大家分享一些關(guān)于名師新人教版八年級數(shù)學(xué)下冊教案,供大家參考學(xué)習(xí)。
名師新人教版八年級數(shù)學(xué)下冊教案(精選篇1)
一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
①確定個圖形平移后的位置的條件:
⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應(yīng)點的位置。
②作平移后的圖形的方法:
⑴找出關(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;⑶將所作的對應(yīng)點按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。
⑶任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
⑷旋轉(zhuǎn)前后的兩個圖形全等。
3.簡單的旋轉(zhuǎn)作圖
⑴已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。
⑵已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
⑸旋轉(zhuǎn)變換與軸對稱變換的'組合;⑹軸對稱變換與平移變換的組合。
名師新人教版八年級數(shù)學(xué)下冊教案(精選篇2)
教學(xué)目標(biāo)
知識與技能
用二元一次方程組解決有趣場景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟。
過程與方法
1.通過設(shè)置問題串,讓學(xué)生體會分析復(fù)雜問題的思考方法。
2.讓學(xué)生進一步經(jīng)歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界 的有效數(shù)學(xué)模型。
情感態(tài)度與價值觀
在學(xué)習(xí)過程中讓學(xué)生體驗把復(fù)雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學(xué)生克服困難的意志和勇氣, 樹立自信心,并鼓勵學(xué)生合作 交流,培養(yǎng)學(xué)生的團隊精神.
教學(xué)重點
1.初步體會列方程組解決實際問題的步驟。
2.學(xué)會用圖表 分析較復(fù)雜的數(shù)量關(guān)系問題。
教學(xué)難點
將實際問題轉(zhuǎn)化 成二元一次方程組的數(shù)學(xué)模型;會用圖表分析數(shù)量關(guān)系。
教學(xué)準(zhǔn)備:
教具:教材,課件,電腦(視頻播放器)
學(xué)具:教材,練習(xí)本
教學(xué)過程
第一環(huán)節(jié):復(fù)習(xí)提問(5分鐘,學(xué)生口答)
內(nèi)容:填空:
(1)一個兩位數(shù),個位數(shù)字是 ,十位數(shù)字是 ,則這個兩位數(shù)用代數(shù)式表示為 ;若交換個位和十位上的數(shù)字得到一個新的兩位數(shù),用代數(shù)式表示為。
(2)一個兩位數(shù),個位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個0,就得到一個三位數(shù),這個三位數(shù)用代數(shù)式可以表示為 。
(3)有兩個兩位數(shù)和 ,如果將 放在 的左邊,就得到一個四位數(shù),那么這個四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個新的四位數(shù),那么這個四位數(shù)用代數(shù)式可表示為。
第二環(huán)節(jié):情境引入(10分鐘,學(xué)生動腦思考,全班交流)
內(nèi)容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況。你能 確定小明在12:00時看到的里程碑上的數(shù)嗎?
第三環(huán)節(jié):合作學(xué)習(xí)(10分鐘,小組討論,找等量關(guān)系,解決 問題)
內(nèi)容:例1
兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù)。已知前一個四位數(shù)比后一個四位數(shù)大2178,求這兩個兩位數(shù)。
學(xué)生先獨立思考例1,在此基礎(chǔ)上,教師根據(jù)學(xué)生思考情況組織交流與討論。
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生嘗試獨立解決問題,全班交流)
內(nèi)容:練習(xí)
1.一個兩位數(shù),減去它的各位數(shù)字之和的3倍,結(jié)果是23;這個兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1。這個兩位數(shù)是多少?
2.一個兩位數(shù)是另一個兩位數(shù)的3倍,如果把這個兩位數(shù)放在另一個兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個兩位數(shù)。
第五環(huán)節(jié):課堂小結(jié)(5分鐘,教師引導(dǎo)學(xué)生總結(jié)一般步驟)
內(nèi)容:
1.教師提問:本節(jié)課我們學(xué)習(xí)了那些內(nèi)容,對這些內(nèi)容你有什么體會和想法?請與同伴交流。
2.師生互相交流總結(jié)出列方程(組)解決實際問題的一般步驟。
第 六環(huán)節(jié):布置作業(yè)
內(nèi)容:習(xí)題7.6
A組(優(yōu)等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
名師新人教版八年級數(shù)學(xué)下冊教案(精選篇3)
教學(xué)內(nèi)容分析:
⑴ 學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
⑶ 對本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
⑴學(xué)生在小學(xué)初步認識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
⑵學(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。
⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學(xué)生的推理能力。
⑶情感態(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:
掌握正方形的性質(zhì)與判定,并進行簡單的推理。
難點:
探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:
類比與探究
教具準(zhǔn)備:
可以活動的四邊形模型。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。
【學(xué)生活動】
學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動】
評析學(xué)生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動】
學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:
㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動】
小組討論,舉手搶答。
【教師活動】
表揚學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形 每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學(xué)生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。
學(xué)生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的`判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及 的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)。
BC=AB=4cm(正方形的四條邊相等)
∴ =45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC= = =4 cm
∵AO= AC(正方形的對角線互相平分)
∴AO= ×4 =2 cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H 分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
名師新人教版八年級數(shù)學(xué)下冊教案(精選篇4)
一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1、平移
2、平移的性質(zhì):
⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;
⑵對應(yīng)線段平行且相等,對應(yīng)角相等。
⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。
(4)平移后的圖形與原圖形全等。
3、簡單的平移作圖
①確定個圖形平移后的位置的條件:
⑴需要原圖形的位置;
⑵需要平移的方向;
⑶需要平移的距離或一個對應(yīng)點的位置。
②作平移后的圖形的方法:
⑴找出關(guān)鍵點;
⑵作出這些點平移后的對應(yīng)點;
⑶將所作的對應(yīng)點按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。
1、旋轉(zhuǎn)
2、旋轉(zhuǎn)的性質(zhì)
⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。
⑶任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
⑷旋轉(zhuǎn)前后的兩個圖形全等。
3、簡單的旋轉(zhuǎn)作圖
⑴已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。
⑵已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過程,類型有:
⑴平移變換;
⑵旋轉(zhuǎn)變換;
⑶軸對稱變換;
⑷旋轉(zhuǎn)變換與平移變換的組合;
⑸旋轉(zhuǎn)變換與軸對稱變換的組合;
⑹軸對稱變換與平移變換的組合。
名師新人教版八年級數(shù)學(xué)下冊教案(精選篇5)
一、教學(xué)目標(biāo):
1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題
2、會用計算器求加權(quán)平均數(shù)的值
3、會運用樣本估計總體的方法來獲得對總體的認識
二、重點、難點:
1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
三、教學(xué)過程:
1、復(fù)習(xí)
組中值的定義:上限與下限之間的中點數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2。
因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義。
2、教材P140探究欄目的意圖
①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
②、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
3、教材P140的思考的意圖。
①、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題。
②、幫助學(xué)生理解表中所表達出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
4、利用計算器計算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
5、運用樣本估計總體
要使學(xué)生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況。